SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1 2	Faculty	Faculty of Automotive Engineering, Mechatronics and
1.2		Mechanics
1.3	Department	Automotive Engineering and Transportation
1.4	Field of study	Automotive Engineering
1.5	Cycle of study	Master in Science
1.6	Program of study/Qualification	Tehnici Avansate în Ingineria Autovehiculelor (Advanced
1.0	riogram of study/qualification	Techniques in Automotive Engineering) - în limba engleză
1.7	Form of education	Full time
1.8	Subject code	09.00

2. Data about the subject

2.1	Subject name				Theory and automatization of the automotive components II		
2.2	Subject area				Automotive Engineering		
<u>, , , , , , , , , , , , , , , , , , , </u>	Course responsible/lecturer				Assoc. Prof. PhD. Eng. Dan MOLDOVANU –		
2.2					dan.moldovanu@auto.utcluj.ro		
2 2	Teachers in charge of seminars				Assoc. Prof. PhD. Eng. Dan MOLDOVANU –		
2.5					dan.moldovanu@auto.utcluj.ro		
2.4 Y	2.4 Year of study I 2.5 Semester II		Ш	2.6 Assessment	E		
2.7 Subject Formative category			·	DS			
category Optionality				DI			

3. Estimated total time

3.1 Number of hours per week	3	of which	3.2 Course	2	3.3 Seminar	0	3.3 Laborator	1	3.3 Proie	ect	0
3.4 Total hours in the curriculum	42	of which	3.5 Course	28	3.6 Seminar	0	3.6 Laborator	14	3.6 Proie	ct	0
3.7 Individual study:											
(a) Manual, lecture materia	al and	notes, bib	liograph	ıy						2	1
(b) Supplementary study in the library, online and in the field							1	9			
(c) Preparation for seminar	s/labo	oratory wo	orks, hor	new	ork, repor	ts, po	ortfolios, essa	ays		1	1
(d) Tutoring							5	5			
(e) Exams and tests										2	2
(f) Other activities						-					
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 58											
3.9 Total hours per semester (3.4+3.8) 100											
3.10 Number of credit points 4											

4. Pre-requisites (where appropriate)

4.1	Curriculum	
4.2	Competence	Advanced knowledge of MATLAB

5. Requirements (where appropriate)

5.1	For the course	-
5.2	For the applications seminarului / laboratorului / proiectului	-

6. Specific competences

		Advanced knowledge of MATLAB Simulink.
nal	ces	Implementation of a P, PI, PD, PID control applied in the automotive field.
Professio	competer	Basic and advanced knowledge of an automated system applied in the automotive field.
	es	Report creation.
Cross	competenc	Creating a presentation.

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Developing competences in the Systems and Automation
		domain.
	Specific objectives	Assimilating theoretical knowledge about Systems and
7 2		Automation.
1.2		Knowledge and operation of an automated system.
		Advanced knowledge of working with MATLAB Simulink.

8. Contents

8.1. Lecture (syllabus)	Number of hours	Teaching methods	Notes
1. Introduction to MATLAB. STATEFLOW.	2		
2. Modelling a mechanical transmission in MATLAB	2		
3. Modelling an automatic transmission in MATLAB	2		
4. Modelling an internal combustion engine (Diesel)	2		
5. Modelling an internal combustion engine (Gasoline)	2	Brocontation	ONLINE
6. Modelling an electric vehicle part 1	2	discussions	using MS
7. Modelling an electric vehicle part 2	2		TEAMS
8. Modelling a hybrid vehicle part 1	2		
9. Modelling a hybrid vehicle part 2	2		
10. Modelling a vehicle suspension part 1	2		
11. Modelling a vehicle suspension part 2	2		

12. Implementing a HIL system (Hardware In the Loop) 2							
using MATLAB – mini-robot part 1							
13. Implementing a HIL system (Hardware In the Loop)	2						
using MATLAB – mini-robot part 2							
14. Implementing a HIL system (Hardware In the Loop)	2						
using MATLAB – mini-robot part 3							
Bibliography			·				
1. Grama, L., Prelucrarea numerica a semnalelor, indru	mator de la	aborator, Cluj-Nap	oca, U.T.				
Press, 2014.							
2. Gorunescu, F., Analiza exploratory si procesarea dat	elor cu sim	ulari in MATLAB, C	luj-Napoca,				
Ed. Albastra, 2013.							
3. Hanganut, M., Teoria sistemelor, Ed. Didactica, 1996	5.						
8.2. Sominars /Laboraton//Broject	Number	Teaching	Notos				
8.2. Seminars / Laboratory/Project	of hours	methods	Notes				
1. Creation of a powertrain in MATLAB using SimDriveline	2						
2. Simulation of an Internal Combustion Engine	2	-	ONLINE				
3. Modelling an electric vehicle	2		using MS				
4. Modelling a hybrid vehicle	2		TEAMS,				
5. Analysing an automotive suspension using MATLAB and	2	Presentations	Work using				
interfacing with other programs (AVL BOOST, AVL CRUISE)		applications	MATLAB,				
part 1		applications	installed				
6. Analysing an automotive suspension using MATLAB and	2		using				
interfacing with other programs (AVL BOOST, AVL CRUISE)			University				
part 2			licensing.				
7. Laboratory report check	2						
Bibliography			·				
1. Grama, L., Prelucrarea numerica a semnalelor, indrumator de laborator, Cluj-Napoca, U.T.							
Press, 2014.							
2. Gorunescu, F., Analiza exploratory si procesarea datelor cu simulari in MATLAB, Cluj-Napoca,							
Ed. Albastra, 2013.							
3. Hanganut, M., Teoria sistemelor, Ed. Didactica, 1996.							

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The accumulated competences are necessary for engineers that are working on new designs and mechanical design in the automotive engineering field using MATLAB.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade
10.4 Course	Theory and problem solving	Questions, written exam using assignments in MS TEAMS	40%

10.5 Seminars	Appreciation of the work	Charle of the laboratory work	60%			
/Laboratory/Project	during the laboratories	check of the laboratory work	00%			
10.6 Minimum standard of performance						
Laboratory work and project – minimum grade 5(five)						
Each subject must be solved, minimum grade 5(five)						

Date of filling in:		Title Surname Name	Signature
12.10.2020	Lecture Teachers in charge of application	Conf. Dr. Ing. Dan MOLDOVANU	
		Conf. Dr. Ing. Dan MOLDOVANU	
Date of approval in t	he department	Head of department Prof.PhD.Eng. Barabás Is	tván

Date of approval in the faculty

Dean Prof.PhD.Eng. Filip Nicolae