SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1 2	Faculty	Faculty of Automotive Engineering, Mechatronics and
1.2		Mechanics
1.3	Department	Automotive Engineering and Transportation
1.4	Field of study	Automotive Engineering
1.5	Cycle of study	Master's in Science
16	Program of study/Qualification	Tehnici Avansate în Ingineria Autovehiculelor (Advanced
1.0		Techniques in Automotive Engineering) - în limba engleză
1.7	Form of education	Full time
1.8	Subject code	04.00

2. Data about the subject

2.1	Subject name				Communication BUS	5 Architecture	
2.2	Subject area				Vehicle Network Architecture		
2.2	Course responsible/lecturer				Lecturer PhD Eng. Calin ICLODEAN		
					calin.iclodean@auto.utcluj.ro		
22	Teachers in charge of seminars				Lecturer PhD Eng. Calin ICLODEAN		
2.5					<u>calin.iclodean@auto.utcluj.ro</u>		
2.4 N	ear of study	I	2.5 Semester	1	2.6 Assessment		E
2.7 Subject		Formative category					DS
category		ory Optionality				DI	

3. Estimated total time

3.1 Number of hours per week	3	of which	3.2 Course	1	3.3 Seminar	0	3.3 Laboratory	2	3.3 Project	0
3.4 Total hours in the curriculum	42	of which	3.5 Course	14	3.6 Seminar	0	3.6 Laboratory	28	3.6 Project	0
3.7 Individual study:					•					
(a) Manual, lecture materia	al and	notes, bik	liograph	ıy						20
(b) Supplementary study in the library, online and in the field						20				
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							10			
(d) Tutoring							6			
(e) Exams and tests 2							2			
(f) Other activities										
3.8 Total hours of individual study (sum (3.7(a)3.7(f))) 58										
3.9 Total hours per semester (3.4+3.8)					100					
3.10 Number of credit points 4										

4. Pre-requisites (where appropriate)

4.1	Curriculum	-
12	Competence	General knowledge in the fields of automotive, electronics and
4.2		computer science.

5. Requirements (where appropriate)

5.1	For the course	-
	For the applications	Attending (100% attendance) and performing (promoting) the
5.2	Seminar / laboratory /	activities from the laboratory applications condition the admission
	project	to the final form of evaluation of the discipline.

6. Specific competences

	S	The student should be able to: demonstrate a comprehensive knowledge of the principles and
Professional		theory of operation of any generalized data network and demonstrate a comprehensive
	nce	theoretical and practical knowledge of the key elements and principles of operation of
	mpete	commonly used automotive networks including: LIN, CAN, FlexRay, and MOST.
		Evaluate the impact of complex highly distributed network architectures on vehicle reliability
	ö	and identify suitable systems of systems engineering approaches for the development and
		validation of such automotive networks.
	S	validation of such automotive networks. The student will be able to attend evaluate the suitability of different automotive networks and
	nces	validation of such automotive networks. The student will be able to attend evaluate the suitability of different automotive networks and apply appropriate selection criteria when choosing a network technology for a particular
ross	betences	validation of such automotive networks. The student will be able to attend evaluate the suitability of different automotive networks and apply appropriate selection criteria when choosing a network technology for a particular application.
Cross	ompetences	validation of such automotive networks. The student will be able to attend evaluate the suitability of different automotive networks and apply appropriate selection criteria when choosing a network technology for a particular application. The student will be able to utilize advanced automotive network test equipment and data

7. Discipline objectives (as results from the key competences gained)

7.1 General objective		The general objective is to accumulate knowledge in the field of automotive networks.
	Specific objectives	Evaluate the requirements and critically analyses the suitability
7.2		of new automotive network technologies to support advanced
		safety-critical systems deployment.

8. Contents

8.1. Lecture (syllabus)	Number of hours	Teaching methods	Notes
1. Vehicular Communications Networks. Basic Concepts.	2 hours	-	
2. LIN Hardware Architecture.	2 hours	Exposure,	
3. CAN Protocol Description, Hardware Architecture.	2 hours	conversation,	
4. CAN Message Transfer on the Bus, Error Detection.	2 hours	orientation, etc. Use of technical and visual	
5. FlexRay Hardware Architecture, Communication Protocol.	2 hours		
6. FlexRay Data Frames Structure, Static and Dynamic Segments.		means. Online	
7. MOST Architecture, Network Topologies.	2 hours		

Bibliography

1. Bosch, R., Bosch Automotive Electrics and Automotive Electronics Systems and Components, Networking and Hybrid Drive, Springer 2014 (link);

2. Bosch, R., Automotive Mechatronics, Automotive Networking, Driving Stability Systems, Electronics, Springer 2015, (link);

3. Bosch, R., CAN Specification version 2.0, Robert Bosch GmbH 1991 (download link);

4. Bosch, R., CAN FD Specification version 1.0, Robert Bosch GmbH 2012 (download link);

5. Grzemba, A., MOST The Automotive Multimedia Network, Ed. Franzis Verlag, 2008 (download link);

6. Călin Iclodean, Rețele de Comunicație pentru Autovehicule, Editura Risoprint 2017 (download link);

7. Călin Iclodean, Interconectarea sistemelor virtuale de comandă și control pentru autovehicule, Volumul I, Software-in-the-Loop, Editura Risoprint 2018 (<u>download link</u>);

8. Kozierok, C.M., et al Automotive Ethernet: The Definitive Guide, Intrepid Control Systems 2014 (<u>download sample</u>);

9. Florin Mariașiu, Călin Iclodean, Aplicații Numerice în Simularea Proceselor Motoarelor cu Ardere Internă, Editura UTPRESS 2016 (<u>download link</u>);

10. Florin Mariașiu, Călin Iclodean, Managementul Motoarelor cu Ardere Internă, Editura Risoprint 2013 (<u>download link</u>);

11. Paret, Dominique, FlexRay and its Applications: Real Time Multiplexed Network, Wiley 2012 (link);

	Numbe	
8.2. Seminars / Laboratory / Project	rof	Teaching methods Notes
	hours	
	nours	
1. Define the first project in the computer simulation	2 hours	
application.		
2. System modeling in the computer simulation	2 h aurra	
application.	2 nours	
3. Connecting the elements and the nodes in the network.	2 hours	
4. Defining the initial data of the simulated system.	2 hours	Exercises,
5. Characteristics of the simulation process.	2 hours	conversations,
6. Running the computer simulations.	2 hours	description,
7. Viewing and evaluating the results.	2 hours	modeling, etc.
8. Define the second project in the PC simulation	2 hours	Use of technical
application.	2 110013	and visual
9. System modeling in the computer simulation	2 hours	means.
application.	2 110013	Online
10. Connecting the elements and the nodes in the	2 hours	application
network.	2 110013	
11. Defining the initial data of the simulated system.	2 hours	
12. Characteristics of the simulation process.	2 hours	
13. Running the computer simulations.	2 hours	
14. Viewing and evaluating the results.	2 hours	

Bibliography

1. Bosch, R., Bosch Automotive Electrics and Automotive Electronics Systems and Components, Networking and Hybrid Drive, Springer 2014 (link);

2. Bosch, R., Automotive Mechatronics, Automotive Networking, Driving Stability Systems, Electronics, Springer 2015, (link);

3. Bosch, R., CAN Specification version 2.0, Robert Bosch GmbH 1991 (download link);

4. Bosch, R., CAN FD Specification version 1.0, Robert Bosch GmbH 2012 (download link);

5. Grzemba, A., MOST The Automotive Multimedia Network, Ed. Franzis Verlag, 2008 (download link);

6. Călin Iclodean, Rețele de Comunicație pentru Autovehicule, Editura Risoprint 2017 (download link);

7. Călin Iclodean, Interconectarea sistemelor virtuale de comandă și control pentru autovehicule, Volumul I, Software-in-the-Loop, Editura Risoprint 2018 (<u>download link</u>);

8. Kozierok, C.M., et al Automotive Ethernet: The Definitive Guide, Intrepid Control Systems 2014 (download sample);

9. Florin Mariașiu, Călin Iclodean, Aplicații Numerice în Simularea Proceselor Motoarelor cu Ardere Internă, Editura UTPRESS 2016 (<u>download link</u>);

10. Florin Mariașiu, Călin Iclodean, Managementul Motoarelor cu Ardere Internă, Editura Risoprint 2013 (<u>download link</u>);

11. Paret, Dominique, FlexRay and its Applications: Real Time Multiplexed Network, Wiley 2012 (link);

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The courses and the curricula are developed in close connection with Porsche Engineering.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade			
10.4 Course	General subjects' evaluation.	Written evaluation.	60%			
10.5 Seminars /	Create a simulation	Checking applications	40%			
Laboratory / Project	model.					
10.6 Minimum standard of performance						

Date of filling in:		Title Surname Name	Signature
12.10.2020	Lecturer	Lecturer PhD Eng. Calin ICLODEAN	
	Teachers in charge of	Lecturer PhD Eng. Calin ICLODEAN	
	application		

Date of approval in the department

Head of department Prof.dr.ing. Barabás István

Date of approval in the faculty

Dean Prof.dr.ing. Filip Nicolae