1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1 2	Faculty	Faculty of Automotive Engineering, Mechatronics and
1.2		Mechanics
1.3	Department	Automotive Engineering and Transportation
1.4	Field of study	Automotive Engineering
1.5	Cycle of study	Master in Science
1.6	Program of study/Qualification	Tehnici Avansate în Ingineria Autovehiculelor (Advanced
1.0		Techniques in Automotive Engineering) - în limba engleză
1.7	Form of education	Full time
1.8	Subject code	07.00

2. Data about the subject

2.1	Subject name	Subject name E			Electric and hybrid powertrains		
2.2	Subject area	ea			Automotive Engineering		
2.2	Course responsible/lecturer				Prof. PhD Habil. Eng. Bogdan Ovidiu VARGA –		
2.2					Bogdan.varga@auto.utcluj.ro		
~ ~	Teachers in charge of seminars				Prof. PhD Habil. Eng. Bogdan Ovidiu VARGA –		
2.3					Bogdan.varga@auto.utcluj.ro		
2.4	2.4 Year of study I 2.5 Semester II		11	2.6 Assessment	E		
2.7 Subject Formative category				DA			
category Optionality				DI			

3. Estimated total time

3.1 Number of hours per week	3	of which	3.2 Course	2	3.3 Seminar	0	3.3 Laborator	1	3.3 Proiect	0
3.4 Total hours in the curriculum	42	of which	3.5 Course	28	3.6 Seminar	0	3.6 Laborator	14	3.6 Proiect	0
3.7 Individual study:										
(a) Manual, lecture materia	al and	notes, bib	liograph	ıy					2	.0
(b) Supplementary study in	the li	brary, onl	ine and	in th	e field				2	.0
(c) Preparation for seminar	s/labo	oratory wo	orks, hor	new	ork, repor	ts, po	ortfolios, essa	ays	1	.1
(d) Tutoring				!	5					
(e) Exams and tests										2
(f) Other activities										-
3.8 Total hours of individual stud	y (sun	าm (3.7(a)	3.7(f)))	58					
3.9 Total hours per semester (3.4	+3.8)				100					
3.10 Number of credit points					4					

4. Pre-requisites (where appropriate)

4.1	Curriculum	
4.2	Competence	Simulation engineering software, vehicle calculus and construction

5. Requirements (where appropriate)

5.1	For the course	
	For the applications	
5.2	seminarului / laboratorului /	
	proiectului	

6. Specific competences

Professional competences	The student will be able to understand to develop and to evaluate the energy flow in the hybrid and electric vehicle powertrain. He will accumulate knowledge in the field of electrification of the vehicle. He will accumulate knowledge in terms of electric motors, batteries for electric and hybrid propulsion. He will be able to evaluate the range of a electric vehicle due to battery capacity, energy storage level, environmental temperature.
Cross competences	The student will be able to attend evaluate various sources of propulsion covering electrical motor to internal combustion.

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	The general objective is to accumulate knowledge in the filed of vehicle electrification.
7.2	Specific objectives	 evaluate and understand the energy flow in the hybrid vehicle evaluate and understand the energy flow in the electric vehicle.

8. Contents

8.1. Lecture (syllabus)	Number of hours	Teaching methods	Notes
1. Principles of Modelling and Simulation Processes.	2		
2. Mathematics Behind the Models	2		
3. Engine models	2		
4. Powertrain models	2		
5. Virtual Powertrain Design	2		
6. Classical Powertrain Configuration Model and	2	Procontation	
Simulation		Presentation, discussions	
7. Hybrid Powertrain Configuration Model and Simulation	2	uiscussions	
8. Electric Powertrain Configuration Model and Simulation	2		
9. Creating Virtual Road Infrastructure	2		
10. Energy efficiency road dependent.	2		
11. Energy efficiency temperature dependent.	2]	
12. Simulation in the loop	2		

str. Memorandumului nr. 28, 400114 Cluj-Napoca, România

13. Hardware in the loop	2		
14. Real vs simulated environment	2		
Bibliography			
ELECTRIC AND PLUG-IN HYBRID VEHICLES 2015 AUTHORS-BO	gdan Ovidi	iu Varga • Florin N	lariasiu • Da
Moldovanu • Calin Iclodean , ISBN: 9783319186382 • 97833	19186399		
DOI: 10.1007/978-3-319-18639-9			
8.2. Seminars /Laboratory/Project	Number	Teaching	Notes
o.z. Seminars / Laboratory/ Project	of hours	methods	Notes
1. Simulation environment, AVL Cruise vehicle components	2		
2. AVL Cruise vehicle connections, AVL Cruise standard	2		
vehicle model			
3. AVL Cruise hybrid vehicle model, AVL Cruise electric	2		
vehicle model			
4. AVL Cruise standard vehicle simulation, AVL Cruise	2		
hybrid vehicle simulation			
		Presentations,	
5. AVL Cruise electric vehicle simulation, AVL Cruise	2	applications	
electric/hybrid vehicle energy flow – road depended			
6. AVL Cruise electric/hybrid vehicle energy flow –	2	1	
temperature depended, AVL Cruise electric/hybrid vehicle			
energy flow –battery state of charge dependent			
7. CarMaker electrical/hybrid vehicle simulation	2	1	
environment, CarMaker electrical/hybrid vehicle energy			
flow –road depended			
Bibliography			
1. AVL Cruise laboratory notes- practical usage			

2. CarMaker laboratory notes- practical usage

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The courses and the curricula are developed in close connection with Porsche Enginnering.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade			
10.4 Course	General subjects evaluation	Written evaluation	70%			
10.5 Seminars	To create a vehicle in a	Computer simulation	30%			
/Laboratory/Project	simulation environment					
10.6 Minimum standa	ard of performance					
Laboratory work-mir	imum grade 5(five)					
Each subject must be	Each subject must be solved, minimum grade 5(five)					
Know the models from	n AVL CRUISE and identify cor	nponents and how they work. Kno	w the schematics			
of a classic, hybrid and	d electric vehicle and the desc	ription of the components.				

Date of filling in:		Title Surname Name	Signature
23.02.2023	Lecture	Prof. PhD. Habil. Eng. Bogdan Ovidiu VARGA	
	Teachers in charge of	Prof. PhD. Habil. Eng. Bogdan Ovidiu VARGA	
	charge of application		

Date of approval in the department 20.04.2023 Head of department Prof.PhD.Eng. Barabás István

Date of approval in the faculty $11.10.2023 \label{eq:approx}$

Dean Prof.PhD.Eng. Filip Nicolae