SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1 2	Faculty	Faculty of Automotive Engineering, Mechatronics and
1.2		Mechanics
1.3	Department	Automotive Engineering and Transportation
1.4	Field of study	Automotive Engineering
1.5	Cycle of study	Master in Science
1.6	Program of study/Qualification	Tehnici Avansate în Ingineria Autovehiculelor (Advanced
1.0		Techniques in Automotive Engineering) - în limba engleză
1.7	Form of education	Full time
1.8	Subject code	05.20

2. Data about the subject

2.1	Subject name				CAM engineering in manufacturing		
2.2	Subject area				Automotive Engineering		
2.2	Course responsible/lecturer			Assoc. Prof. PhD. Eng. Paul Bere			
2.3	3 Teachers in charge of seminars			Assoc. Prof. PhD. Eng. Paul Bere			
2.4	2.4 Year of study I 2.5 Semester I		Ι	2.6 Assessment	С		
2.7 9	2.7 Subject Formative category					DS	
category Optionality				DO			

3. Estimated total time

3.1 Number of hours per week	2	of which	3.2 Course	1	3.3 Seminar	0	3.3 Laborator	0	3.3 Proiect	1
3.4 Total hours in the curriculum	28	of which	35	14	3.6 Seminar	0	3.6 Laborator	0	3.6 Proiect	14
3.7 Individual study:			I.				L			
(a) Manual, lecture material and notes, bibliography					2	0				
(b) Supplementary study in the library, online and in the field					2	0				
(c) Preparation for seminar	s/labo	oratory wo	orks, hor	new	ork, repor	ts, po	ortfolios, essa	ays		3
(d) Tutoring										2
(e) Exams and tests										2
(f) Other activities										-
3.8 Total hours of individual stud	y (sun	าm (3.7(a)	3.7(f)))	47					
3.9 Total hours per semester (3.4	+3.8)				75					
3.10 Number of credit points					3					

4. Pre-requisites (where appropriate)

4.1	Curriculum	General knowledge of mathematics, physics, mechanics, manufacturing basics, materials science computing engineering
4.2	Competence	Computer use knowledge

5. Requirements (where appropriate)

5.1	For the course	
	For the applications	
5.2	seminarului / laboratorului /	
	proiectului	

6. Specific competences

		Identify, define and use specific technologies for making parts from different materials.
		Description of the theories and basic principles for designing the manufacture of specific vehicle
		parts through CAM
		Use the basic knowledge to explain and interpret the different technologies used in the
la	ses	manufacture of automotive components.
sion	tenc	Application of basic methods and principles for designing manufacturing processes using classic
Professional	competences	machining or CNC machining centers.
Pro	con	Advantages and limitations of classical or modern machining machines and flexible systems for
		standard quality assessment in manufacturing processes. Development of new materials and
		technologies in the field of automotive components
		Studying and developing technical solutions in the field of manufacturing and production of
		automotive components
	S	Responsibility for complex professional duties, under conditions of limited autonomy and
	nce	qualified assistance - Autonomy and responsibility
Cross competences		Awareness of the need for continuous training; efficient use of resources and learning
0	dmc	techniques for personal and professional development - personal and professional development
	S	Effective use of language skills and knowledge of information and communication technology.

7. Discipline objectives (as results from the *key competences gained*)

7.1	General objective	Developing professional skills in the field of automotive technology
7.2	Specific objectives	Knowledge, understanding of the concepts, theories and methods of the manufacturing process; Their correct use in professional communication; Using basic knowledge for applying and interpreting different types of methods, situations, processes, etc. (in wider contexts) associated with vehicle components - Explanation and interpretation; Developing professional projects using innovative, quantitative and qualitative principles and methods in the automotive industry

8. Contents

8.1. Locture (cullabue)	Number	Teaching	Notes
8.1. Lecture (syllabus)	of hours	methods	Notes
1. Introduction. General about manufacturing technologies	2		
in car development		Exposure	
2. Fast prototyping technologies using CAM.	2	(explanation,	
3. Cutting machining technologies CAM.	2	description),	
4. Processes and production equipment. Production of	2	presentation,	
castings by casting.		analysis,	ONLINE using MS
5. Technologies for the manufacture of plastic parts. Mold	2	advantages,	
injection, extrusion, thermoforming, calendering, plastics		disadvantages,	TEAMS
according to CAM.		applicability,	
6. Technologies for obtaining composite materials.	2	conversation,	
Vacuum contacting via RTM through simultaneous		demonstration,	
projection, autoclave, VRTM, by pressing.		illustration,	
7. Surface coating technology. Surface treatments. Eco-	2	guidance etc.	
design in the automotive industry.			
Bibliography			
1. Ancau M., Manufacturing Technologies, Editura Casa	a Cartii de S	itiinta , Cluj-Napoca	a, 2003
2. DeGarmo E.P.s.a, Materials and Processes in Manufa	acturing, Pr	entice Hall, New Yo	ork, 8 th

- edition, 1997,
- Kalpacjian S., Manufacturing Processes for Engineering Materials, Adison Vesley Longman Inc. 3rd edition, 1997,
- 4. Berce, P. Tehnologia fabricației și a reparației utilajului tehnologic. Cluj-Napoca 1991
- 5. Berce, P., Bâlc, N., ş.a. Tehnologii de Fabricare Rapidă a Prototipurilor, Editura Tehnică, București, 2000,
- 6. Bâlc, N. Tehnologia Neconvenționale, Cluj-Napoca, Editura Dacia, 2001,
- 7. Marinescu, N.I., ş.a. Prelucrări neconvenționale in construcția de mașini, Editura Tehnică, București, 1993
- 8. Bâlc, N., Gyenge, Cs., Berce, P., Proiectare pentru Fabricația Competitivă, Cluj-Napoca, Editura Alma Mater, 2006,
- 9. Gyenge, Cs., Fratila, D. Ingineria fabricatiei. Editura Alma Mater, Cluj-Napoca .2004. ISBN 973-8397-77-4
- 10. Bere P., Materiale compozite polimerice, Editura UTPRESS 2012
- 11. Hancu,L., Iancau,H., Tehnologia materialelor nemetalice. Tehnologia fabricării pieselor din materiale plastice, Editura ALMA MATER, 2003, 304 pagini, ISBN 973-8397-34-0..
- 12. Iancău,H., Nemeş, O., Materiale compozite- concepție și fabricație, 2002, 155 pagini, editura MEDIAMIRA-Cluj Napoca.
- 13. Seres I., Injectarea materialelor plastice . Editura Imprimeriei de Vest.

8.2. Seminars /Laboratory/Project	Number of hours	Teaching methods	Notes
1. Introduction.	2	Presenting the	ONLINE
2. Analysis of machining operations by means of lathe and universal milling machine (CAM to CNC).	2	equipment, Manufacture	using MS TEAMS,

3. Mechanical machining on different types of	2	samples and	Work using
machine tools (CAM to CNC).		discus	MATLAB,
4. Analysis of the different manufacturing methods	2	illustration.	installed
applied to the parts. Case Study		Studies the	using
5. Presentation of Rapid Prototyping Technologies.	2	best practices,	University
SLS. FDM, LOM, SLM.		automotive	licensing.
6. Thermoforming of plastics.	2	application,	
7. Contact formation of composite materials.	2	examples	
1		Results,	
		method	
		guidance etc.	

Bibliography

- 1. Ancau M., Manufacturing Technologies, Editura Casa Cartii de Stiinta, Cluj-Napoca, 2003
- DeGarmo E.P.s.a, Materials and Processes in Manufacturing, Prentice Hall, New York, 8th edition, 1997,
- Kalpacjian S., Manufacturing Processes for Engineering Materials, Adison Vesley Longman Inc. 3rd edition, 1997,
- 4. Berce, P. Tehnologia fabricației și a reparației utilajului tehnologic. Cluj-Napoca 1991
- 5. Berce, P., Bâlc, N., ş.a. Tehnologii de Fabricare Rapidă a Prototipurilor, Editura Tehnică, București, 2000,
- 6. Bâlc, N. Tehnologia Neconvenționale, Cluj-Napoca, Editura Dacia, 2001,
- 7. Marinescu, N.I., ş.a. Prelucrări neconvenționale in construcția de mașini, Editura Tehnică, București, 1993
- 8. Bâlc, N., Gyenge, Cs., Berce, P., Proiectare pentru Fabricația Competitivă, Cluj-Napoca, Editura Alma Mater, 2006,
- 9. Gyenge, Cs., Fratila, D. Ingineria fabricatiei. Editura Alma Mater, Cluj-Napoca .2004. ISBN 973-8397-77-4
- 10. Bere P., Materiale compozite polimerice, Editura UTPRESS 2012
- 11. Hancu,L., Iancau,H., Tehnologia materialelor nemetalice. Tehnologia fabricării pieselor din materiale plastice, Editura ALMA MATER, 2003, 304 pagini, ISBN 973-8397-34-0..
- 12. Iancău,H., Nemeş, O., Materiale compozite- concepție și fabricație, 2002, 155 pagini, editura MEDIAMIRA-Cluj Napoca.
- 13. Seres I., Injectarea materialelor plastice . Editura Imprimeriei de Vest.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The skills acquired will be required for employees working in the field of motor vehicle engineering. Competence training takes into account employers' recommended options for higher education institutions for graduate training (ability to use time effectively, teamwork responsibility, ability to learn quickly, ability to coordinate teams, new opportunities in the field of interest the ability to use computer simulation, the ability to adapt to new situations, etc.) as well as the priorities recommended by employers in the field to prepare graduates (creativity and ability to innovate, ability to negotiate, critical and self- criticizes analytical ability, knowledge of other areas).

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade			
10.4 CourseFrequency and behaviour in activities. The given marks to the final examination		written assessment (MS TEAMS)	80%			
10.5 Seminars /Laboratory/Project	 Ability to work with assimilated knowledge; Ability to apply in practice; 	Active participation at applications.	20%			
10.6 Minimum standard of performance						
Laboratory work and	Laboratory work and project – minimum grade 5(five)					
Each subject must be	solved, minimum grade 5(five	e)				

Date of filling in:		Title Surname Name	Signature
23.09.2021	Lecture	Assoc. Prof. PhD. Eng. Paul Bere	
	Teachers in charge of	Assoc. Prof. PhD. Eng. Paul Bere	
	charge of application		

Date of approval in the department

Head of department Prof.PhD.Eng. Barabás István

Date of approval in the faculty

Dean Prof.PhD.Eng. Filip Nicolae