SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Automotive Engineering, Mechatronics and
1.2		Mechanics
1.3	Department	Automotive Engineering and Transportation
1.4	Field of study	Automotive Engineering
1.5	Cycle of study	Master in Science
1.6	Program of study/Qualification	Tehnici Avansate în Ingineria Autovehiculelor (Advanced
1.0		Techniques in Automotive Engineering) /engineer
1.7	Form of education	Full time
1.8	Subject code	15.00

2. Data about the subject

2.1	Subject name			Vehicle body structures			
2.2	Subject area			Engineering			
2 2	12.3 Course responsible/lecturer			Prof. PhD Habil. Eng. Florin MARIASIU			
2.3				(florin.mariasiu@auto.utcluj.ro)			
2.4	Teachers in charge of seminars			Assoc.Prof PhD. E	ng. Liviu S	CURTU (liviu.scurtu@auto.	utcluj.ro)
2.5 Year of study 2 2.6 Semester 4		2.7 Assessment	Ex	2.8 Subject category	DS/DI		

3. Estimated total time

3.1 Number of hours per week	4	3.2 of which, course:	2	3.3 applications:	2
3.4 Total hours in the curriculum	56	3.5 of which, course:	28	3.6 applications:	28
Individual study				hours	
Manual, lecture material and notes,	bibliogr	aphy			30
Supplementary study in the library, online and in the field					40
Preparation for seminars/laboratory works, homework, reports, portfolios, essays					10
Tutoring					12
Exams and tests					2
Other activities					0
					•

3.7	Total hours of individual study	94
3.8	Total hours per semester	150
3.9	Number of credit points	6

4. Pre-requisites (where appropriate)

4.1	Curriculum	N/A
4.2	Competence	Basic Solid Works knowledge

5. Requirements (where appropriate)

5.1	For the course	N/A
5.2	For the applications	N/A

6. Specific competences

		Knowledge about the main structural characteristics and functional parts of vehicles body's
	S	structure;
ona	nce	• Knowledge about general elements of car body and chassis design and verification requests;
essi	ete	• Knowledge about general considerations related to the aerodynamic properties of vehicles;
Professional	competences	Knowledge about the basics of construction, operation and maintenance of car bodies and
	ខ	chassis.
		Use of software for modelling and simulation processes
	S	Use appropriate and effective methods and techniques of modern learning;
	nce	• Appropriate use of specific technical terms, in oral and written communication in a European
Cross	ete	language (English);
S	competences	Develop skills of analysis, interpretation and decision processes;
	S	Using information and communication technology (ICT).

7. Discipline objectives (as results from the key competences gained)

		Development of skills in the field of design, operation,		
7 1	General objective	manufacturing and maintenance of road vehicles with		
7.1		knowledge of specialized areas to support the professional		
		training.		
		Assimilation of theoretical knowledge regarding chassis and		
	Specific objectives	bodies of vehicles		
7.2		Get skills for designing a chassis structures (use of technical		
7.2		documentation, software use for modeling)		
		Conduct a modeling and computer simulation process		
		Obtaining skills in aerodynamic optimizing of road vehicles		

8. Contents

8.1. Lecture (syllabus)	Hours	Teaching methods	Notes
1. Course presentation. Purpose, objectives, requirements.	_		
Current and future trends in VBS design in automotive	2		
industry.			
2.Vehicle development process	2		
3.Product Evolution Process	2	Exposure and	
4. Evaluation test 1	2	applications. Case	
5. Primary relevant vehicle characteristics	2	studies.	onsite
6. Car chassis and body.	2		
7. Materials and fabrication technologies for VBS	2		
8. Evaluation test 2	2		
9-10. General concepts regarding the study of aerodynamic	4		
11. Aerodynamics of automobiles	2		

12. Aerodynamics of heavy vehicles	2
13. Evaluation test 3	2
14. Course recapitulation. Presentation of examination's	2
subjects, conditions and requirements for final examination.	2

Bibliography

- Morello et. al. The automotive body, Editura Springer, 2013.
- Barnard R.H. Road Vehicle Aerodynamic Design, Ed. Mechaero Publishing, St. Albans, 2001
- Houghton E.L. Aerodynamics for Engineering Students, Ed. Butterworth-Heinemann, Oxford, 2003
- Neguţ, N., Hluşcu, M., Pinca-Bretotean, C. Caroserii şi structuri portante pentru autovehicule rutiere, Ed. Politehnica, Timişoara, 2007, vol.I
- Hucho, W.H. (coord.) Aerodynamics of Road Vehicles, SAE International, Warrendale, Pennsylvania, 1998
- Rus. I., Autovehicule rutiere, Editura Sincron 2002, Cluj Napoca.
- Crolla. D.A. Automotive Engineering Powertrain, chassis system and vehicle body, Editura Elsevier, 2009.
- Course Notes

8.2 Laboratory	Hours	Teaching methods	Notes
1.Laboratory work presentation. Purpose, objectives, requirements. Modeling a vehicle chassis	4		
2.Static and dynamic analysis of a vehicle chassis	4		
3.Topological optimization of a body car component	4	Exposure and	
4. Modeling an automobile body. Analysis of aerodynamic performance	4	applications. Case	onsite
5.Modeling a truck body. Analysis of aerodynamic performance	4	studies.	
6.Modeling of the impact of the vehicle chassis with a barrier	4		
7.Recap works. Submission of the laboratory dosier.	4		

Bibliography

- Morello et. al. The automotive body, Editura Springer, 2013.
- Barnard R.H. Road Vehicle Aerodynamic Design, Ed. Mechaero Publishing, St. Albans, 2001
- Houghton E.L. Aerodynamics for Engineering Students, Ed. Butterworth-Heinemann, Oxford, 2003
- Neguţ, N., Hluşcu, M., Pinca-Bretotean, C. Caroserii şi structuri portante pentru autovehicule rutiere, Ed. Politehnica, Timişoara, 2007, vol.I
- Hucho, W.H. (coord.) Aerodynamics of Road Vehicles, SAE International, Warrendale, Pennsylvania, 1998
- Rus. I., Autovehicule rutiere, Editura Sincron 2002, Cluj Napoca.
- Crolla. D.A. Automotive Engineering Powertrain, chassis system and vehicle body, Editura Elsevier, 2009.
- Course Notes

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The skills and competences gained will be required by employees who work in automotive domain related industry: Design, operation and maintenance of road transport vehicles; Numerical modeling and simulation methods; Design and manufacturing of car structures and bodies; Auto services stations; Companies specialized in selling spare parts and accessories for car body and chassis etc.

10. Evaluation

A ativity type	10.1 Assassment criteria	10.2 Assessment meethods	10.3 Weight in the
Activity type	10.1 Assessment criteria	10.2 Assessment methods	final grade

	Participation in all				
10.4 Course	periodical evaluation tests	The average of the grades			
	or Exam with solving	obtained in the evaluation tests	70%		
	theory topics specific to	or grid test final examination			
	the discipline				
10.5 Applications	Resolving of laboratories	Evaluation of laboratory works	30%		
	applications	results			
10.6 Minimum standard of performance					
Perform laboratory work according to requirements					

Minimum 50% of test items to be solved for grid test final examination

Date of filling in:		Title Surname Name	Signature
18.06.2025	Lecturer	Prof. PhD Habil. Eng. Florin MARIASIU	
	Teachers in charge of application	Assoc. Prof. PhD. Eng. Liviu SCURTU	

Date of approval in the department ART 24.06.2025	Head of department Prof.dr.ing. Istvan BARABAS
Date of approval in the faculty ARMM 25.06.2025	Dean Prof.dr.ing. Nicolae FILIP