SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Automotive Engineering, Mechatronics and
1.2		Mechanics
1.3	Department	Automotive Engineering and Transportation
1.4	Field of study	Automotive Engineering
1.5	Cycle of study	Master in Science
1.6	Program of study/Qualification	Tehnici Avansate în Ingineria Autovehiculelor (Advanced
1.6	Program or study/Qualification	Techniques in Automotive Engineering) - în limba engleză
1.7	Form of education	Full time
1.8	Subject code	20.00

2. Data about the subject

2.1	Subject name				Dissertation Project Work	
2.2	Subject area				Automotive Engineering	
2.2	Course responsible/lecturer				-	
2.3	Teachers in charge of seminars				-	
2.4 \	Year of study II 2.5 Semester II				2.6 Assessment	V
2.7 Subject Formative category			native category			DA
category Optionality			onality			DI

3. Estimated total time

3.1 Number of hours per week	7	of which	3.2 Course	0	3.3 Seminar	0	3.3 Laborator	0	3.3 Proiect	7
3.4 Total hours in the curriculum	98	of which	3.5 Course	0	3.6 Seminar	0	3.6 Laborator	0	3.6 Proiect	98
3.7 Individual study:						•				
(a) Manual, lecture material and notes, bibliography							0			
(b) Supplementary study in the library, online and in the field							.50			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							0			
(d) Tutoring							0			
(e) Exams and tests							2			
(f) Other activities							-			
3.8 Total hours of individual stud	v (sun	nm (3.7(a)	3.7(f)))	152					

4. Pre-requisites (where appropriate)

3.9 Total hours per semester (3.4+3.8)

3.10 Number of credit points

4.1	Curriculum	
4.2	Competence	identification of advanced analysis methods used for the
4.2 Competence		maintenance, repair and operation of the motor vehicle fleet

250

5. Requirements (where appropriate)

5	.1	For the course	
		For the applications	
5	.2	seminarului / laboratorului /	
		proiectului	

6. Specific competences

ь.	Spe	cific competences
		Expression by written and oral communication in technical language of the theoretical foundations underlying the elaboration of a technical project;
		Knowledge of the general principles and stages of the drafting of a project; Formulation and application of methods and techniques / principles studied for the design of equipment for motor vehicles;
	Professional	Explaining and interpreting specific projects, using theoretical concepts and graphical tools; Adoption of criteria and methods for evaluation of concepts, theories and programs for the design of motor vehicle equipment;
	Pro	The comparative analysis of the data and its evaluation based on the theories and the methods used in the applicative research specific to the motor vehicles; Appropriate use of standard assessment criteria and methods to objectively assess the theoretical and practical elements related to technologies related to the design, construction and operation of motor vehicles;
		Elaboration of projects, models and prototypes, using principles and methods established in the field;
	ss competences	Respecting the principles, norms and values of the professional ethics code by addressing a rigorous, efficient and responsible work strategy for problem solving and decision-making. Applying the techniques of multidisciplinary teamwork and multidisciplinary work, on different hierarchical levels, within the working team - specific project management.

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Application of advanced methods in the design, construction, maintenance, repair and operation of vehicles.
		Identification of advanced analysis methods used in maintenance, repair and operation of vehicles.
7.2 Specific object	Specific objectives	Identifying and designing solutions for vehicle equipment.
		The technical, economic and financial basis of the modernization decisions for vehicles.

Appropriate use of effective lifelong learning methods and techniques; adequate use of

information and oral and written communication in a European language.

www.utcluj.ro

8. Contents

8. Contents	Number	Teaching	
8.1. Lecture (syllabus)	of hours	methods	Notes
Analysing the need for the project and the current state	Of flours	methods	
of the art.			
Conceptual development of the project and analysis of			
the variants.			
3. Establish the design solution and specify the initial data.			
4. Elaboration of the project (elements of detail, choice of			
materials, setting of features, graphic representation,			
simulations, research / development elements, including			
practical achievements).			
5. Project evaluation from an economic point of view and			
implementation.			
6. Evaluation of the project in terms of its environmental			
impact in the context of sustainable mobility.			
	Number	Teaching	
8.2. Individual study	of hours	methods	Notes
1. Study of the literature for the current state of the art			
achievements and research in the field of the topic			
addressed			
2. Standards for materials, graphics, machine parts, quality			
assurance, etc.			
3. Analysis of existing variants of projects and synthesis			
materials			
4. The study of the existing online / online literature			
8.3. Strategies and methods to elaborate the paper			
1. At the department level, the graduates present the basic			
elements regarding the elaboration of the diploma project;			
2. Leaders of diploma projects support the graduate for			
the elaboration of the structure / content, the schedule			
with the elaboration schedule and the weekly consultation			
hours;			
3. The project leader verifies during the elaboration stage			
the realization of the prologue and the correctness of the			
solved elements, constantly orienting the candidate;			
4. The graduate must carry out a period of documentation			
on the project in economic units.			
Bibliography			
√ 5 titles, established together with the tutor			

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Synthesis and interpretation of advanced methods of analysis of specific processes in the field of machines and installations in agriculture and food industry.

Using basic principles and methods for project management and ensuring quality of services according to market requirements.

10. Evaluation

10.4 Course	Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade
activities provided in the project Periodic assessment of the semester 10.5 Seminars /Laboratory/Project Acquiring the theoretical and practical knowledge specific to the project theme; 10.5 Seminars /Laboratory/Project Acquiring the theoretical and practical knowledge the coordinating teacher of the dissertation thesis	10.4 Course	-	-	-
design methods		activities provided in the project Acquiring the theoretical and practical knowledge specific to the project theme; Knowledge of assisted	semester The grade (A / R) is proposed by the coordinating teacher of the	100%

10.6 Minimum standard of performance

The ability to identify optimal methods in the field.

The ability to identify the itinerary and organize the processes specific to the field.

The ability to identify and design optimal solutions.

Date of filling in:		Title Surname Name	Signature
24.06.2025	Lecture	-	
	Teachers in	Prof. PhD Habil. Eng. Bogdan VARGA	
	charge of application (masters		
	program responsible)		

Date of approval in the department ART 24.06.2025	Head of department Prof.PhD.Eng. Barabás István
Date of approval in the faculty ARMM 25.06.2025	Dean Prof.PhD.Eng. Filip Nicolae