SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Automotive Engineering, Mechatronics and
1.2		Mechanics
1.3	Department	Automotive Engineering and Transportation
1.4	Field of study	Automotive Engineering
1.5	Cycle of study	Master in Science
1.6	Program of study/Qualification	Tehnici Avansate în Ingineria Autovehiculelor (Advanced
1.0	Program or study/Qualification	Techniques in Automotive Engineering) - în limba engleză
1.7	Form of education	Full time
1.8	Subject code	07.00

2. Data about the subject

2.1	Subject name				Electric and hybrid powertrains		
2.2	Subject area	t area			Automotive Engineering		
2.2	Course respec				Prof. PhD Habil. Eng. Bogdan Ovidiu VARGA –		
2.2	Course responsible/lecturer				Bogdan.varga@auto.utcluj.ro		
2.3	Toachare in ch				Prof. PhD Habil. Eng. Bogdan Ovidiu VARGA –		
2.3	Teachers in charge of seminars				Bogdan.varga@auto.utcluj.ro		
2.4 \	ear of study	I	2.5 Semester	Ш	2.6 Assessment	E	
2.7 Subject Formative category			native category			DA	
category Optionality				DI			

3. Estimated total time

3.1 Number of hours per week	3	of which	3.2 Course	2	3.3 Seminar	0	3.3 Laborator	1	3.3 Proiect	0
3.4 Total hours in the curriculum	42	of which	3.5 Course	28	3.6 Seminar	0	3.6 Laborator	14	3.6 Proiect	0
3.7 Individual study:										
(a) Manual, lecture materia	al and	notes, bib	liograph	ıy						20
(b) Supplementary study in	the li	brary, onl	ine and	in th	e field					20
(c) Preparation for seminar	s/labo	oratory wo	orks, hor	new	ork, repor	ts, po	ortfolios, essa	ays		11
(d) Tutoring										5
(e) Exams and tests										2
(f) Other activities										-
3.8 Total hours of individual stud	v (sun	nm (3.7(a)	3.7(f)))	58					

3.8 Total hours of individual study (summ (3.7(a)3.7(f)))	58
3.9 Total hours per semester (3.4+3.8)	100
3.10 Number of credit points	4

4. Pre-requisites (where appropriate)

4.1	Curriculum	
4.2	Competence	Simulation engineering software, vehicle calculus and construction

5. Requirements (where appropriate)

5.1	For the course	
	For the applications	
5.2	seminarului / laboratorului /	
	proiectului	

6. Specific competences

	The student will be able to understand to develop and to evaluate the energy flow in the hybrid
nal	and electric vehicle powertrain. He will accumulate knowledge in the field of electrification of
ssio	the vehicle. He will accumulate knowledge in terms of electric motors, batteries for electric and
Professional competence:	hybrid propulsion. He will be able to evaluate the range of a electric vehicle due to battery
<u>4</u> 0	capacity, energy storage level, environmental temperature.
ces	The student will be able to attend evaluate various sources of propulsion covering electrical
ss	motor to internal combustion.
Cross	
Cross	
O	

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	The general objective is to accumulate knowledge in the filed of vehicle electrification.
		- evaluate and understand the energy flow in the hybrid vehicle
7.2	Specific objectives	- evaluate and understand the energy flow in the electric
		vehicle.

8. Contents

8.1. Lecture (syllabus)	Number	Teaching	Notes
· · · · · ·	of hours	methods	
1. Principles of Modelling and Simulation Processes.	2		
2. Mathematics Behind the Models	2		
3. Engine models	2		
4. Powertrain models	2		
5. Virtual Powertrain Design	2		
6. Classical Powertrain Configuration Model and	2	Presentation,	
Simulation		- discussions	
7. Hybrid Powertrain Configuration Model and Simulation	2	uiscussions	
8. Electric Powertrain Configuration Model and Simulation	2		
9. Creating Virtual Road Infrastructure	2		
10. Energy efficiency road dependent.	2		
11. Energy efficiency temperature dependent.	2		
12. Simulation in the loop	2		

13. Hardware in the loop	2		
14. Real vs simulated environment	2		
Bibliography	•		
ELECTRIC AND PLUG-IN HYBRID VEHICLES 2015 AUTHORS-BG	ogdan Ovid	iu Varga • Florin M	lariasiu • Dan
Moldovanu • Calin Iclodean , ISBN: 9783319186382 • 97833	19186399		
DOI: 10.1007/978-3-319-18639-9			
8.2. Seminars /Laboratory/Project	Number	Teaching	Notes
6.2. Serimars / Laboratory/Froject	of hours	methods	Notes
1. Simulation environment, AVL Cruise vehicle components	2		
2. AVL Cruise vehicle connections, AVL Cruise standard	2		
vehicle model			
3. AVL Cruise hybrid vehicle model, AVL Cruise electric	2		
vehicle model			
4. AVL Cruise standard vehicle simulation, AVL Cruise	2		
hybrid vehicle simulation			
		Presentations,	
5. AVL Cruise electric vehicle simulation, AVL Cruise	2	applications	
electric/hybrid vehicle energy flow – road depended			
C AVII Carries algebras / bribaid rehisle are area flore	2	_	
6. AVL Cruise electric/hybrid vehicle energy flow –	2		
temperature depended, AVL Cruise electric/hybrid vehicle			
energy flow –battery state of charge dependent			
7. CarMaker electrical/hybrid vehicle simulation	2	-	
environment, CarMaker electrical/hybrid vehicle energy	-		
flow –road depended			
Bibliography	I		
AVL Cruise laboratory notes- practical usage			
2. CarMaker laboratory notes- practical usage			

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The courses and the curricula are developed in close connection with Porsche Enginnering.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade
10.4 Course	General subjects evaluation	Written evaluation	70%
10.5 Seminars /Laboratory/Project	To create a vehicle in a simulation environment	Computer simulation	30%

10.6 Minimum standard of performance

Laboratory work-minimum grade 5(five)

Each subject must be solved, minimum grade 5(five)

Know the models from AVL CRUISE and identify components and how they work. Know the schematics of a classic, hybrid and electric vehicle and the description of the components.

Date of filling in:		Title Surname Name	Signature
24.06.2025	Lecture	Prof. PhD. Habil. Eng. Bogdan Ovidiu VARGA	
	Teachers in charge of	Prof. PhD. Habil. Eng. Bogdan Ovidiu VARGA	
	application		

Date of approval in the department ART	Head of department Prof.PhD.Eng. Barabás István
24.06.2025	
Date of approval in the faculty ARMM	Dean
25.06.2025	Prof.PhD.Eng. Filip Nicolae

www.utcluj.ro